Metamath Proof Explorer


Theorem bj-ax12ssb

Description: Axiom bj-ax12 expressed using substitution. (Contributed by BJ, 26-Dec-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ax12ssb t x φ t x φ

Proof

Step Hyp Ref Expression
1 bj-ax12 x x = t φ x x = t φ
2 sb6 t x φ x x = t φ
3 2 imbi2i φ t x φ φ x x = t φ
4 3 imbi2i x = t φ t x φ x = t φ x x = t φ
5 4 albii x x = t φ t x φ x x = t φ x x = t φ
6 1 5 mpbir x x = t φ t x φ
7 sb6 t x φ t x φ x x = t φ t x φ
8 6 7 mpbir t x φ t x φ