Metamath Proof Explorer


Theorem bj-ax12v3ALT

Description: Alternate proof of bj-ax12v3 . Uses axc11r and axc15 instead of ax-12 . (Contributed by BJ, 6-Jul-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-ax12v3ALT x = y φ x x = y φ

Proof

Step Hyp Ref Expression
1 ax-5 φ y φ
2 axc11r x x = y y φ x φ
3 ala1 x φ x x = y φ
4 1 2 3 syl56 x x = y φ x x = y φ
5 4 a1d x x = y x = y φ x x = y φ
6 axc15 ¬ x x = y x = y φ x x = y φ
7 5 6 pm2.61i x = y φ x x = y φ