Metamath Proof Explorer


Theorem bj-ax12w

Description: The general statement that ax12w proves. (Contributed by BJ, 20-Mar-2020)

Ref Expression
Hypotheses bj-ax12w.1 φ ψ χ
bj-ax12w.2 y = z ψ θ
Assertion bj-ax12w φ y ψ x φ ψ

Proof

Step Hyp Ref Expression
1 bj-ax12w.1 φ ψ χ
2 bj-ax12w.2 y = z ψ θ
3 2 spw y ψ ψ
4 1 bj-ax12wlem φ ψ x φ ψ
5 3 4 syl5 φ y ψ x φ ψ