Metamath Proof Explorer


Theorem bj-csbprc

Description: More direct proof of csbprc (fewer essential steps). (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-csbprc ¬ A V A / x B =

Proof

Step Hyp Ref Expression
1 df-csb A / x B = y | [˙A / x]˙ y B
2 sbcex [˙A / x]˙ y B A V
3 2 con3i ¬ A V ¬ [˙A / x]˙ y B
4 3 alrimiv ¬ A V y ¬ [˙A / x]˙ y B
5 bj-ab0 y ¬ [˙A / x]˙ y B y | [˙A / x]˙ y B =
6 4 5 syl ¬ A V y | [˙A / x]˙ y B =
7 1 6 syl5eq ¬ A V A / x B =