Metamath Proof Explorer


Theorem bj-dfnnf2

Description: Alternate definition of df-bj-nnf using only primitive symbols ( -> , -. , A. ) in each conjunct. (Contributed by BJ, 20-Aug-2023)

Ref Expression
Assertion bj-dfnnf2 Ⅎ' x φ φ x φ ¬ φ x ¬ φ

Proof

Step Hyp Ref Expression
1 df-bj-nnf Ⅎ' x φ x φ φ φ x φ
2 eximal x φ φ ¬ φ x ¬ φ
3 2 anbi2ci x φ φ φ x φ φ x φ ¬ φ x ¬ φ
4 1 3 bitri Ⅎ' x φ φ x φ ¬ φ x ¬ φ