Metamath Proof Explorer


Theorem bj-dtru

Description: Remove dependency on ax-13 from dtru . (Contributed by BJ, 31-May-2019)

TODO: This predates the removal of ax-13 in dtru . But actually, sn-dtru is better than either, so move it to Main with sn-el (and determine whether bj-dtru should be kept as ALT or deleted).

(Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-dtru ¬ x x = y

Proof

Step Hyp Ref Expression
1 el w x w
2 ax-nul z x ¬ x z
3 sp x ¬ x z ¬ x z
4 2 3 eximii z ¬ x z
5 exdistrv w z x w ¬ x z w x w z ¬ x z
6 1 4 5 mpbir2an w z x w ¬ x z
7 ax9 w = z x w x z
8 7 com12 x w w = z x z
9 8 con3dimp x w ¬ x z ¬ w = z
10 9 2eximi w z x w ¬ x z w z ¬ w = z
11 6 10 ax-mp w z ¬ w = z
12 equequ2 z = y w = z w = y
13 12 notbid z = y ¬ w = z ¬ w = y
14 ax7 x = w x = y w = y
15 14 con3d x = w ¬ w = y ¬ x = y
16 15 spimevw ¬ w = y x ¬ x = y
17 13 16 syl6bi z = y ¬ w = z x ¬ x = y
18 ax7 x = z x = y z = y
19 18 con3d x = z ¬ z = y ¬ x = y
20 19 spimevw ¬ z = y x ¬ x = y
21 20 a1d ¬ z = y ¬ w = z x ¬ x = y
22 17 21 pm2.61i ¬ w = z x ¬ x = y
23 22 exlimivv w z ¬ w = z x ¬ x = y
24 11 23 ax-mp x ¬ x = y
25 exnal x ¬ x = y ¬ x x = y
26 24 25 mpbi ¬ x x = y