Metamath Proof Explorer


Theorem bj-dtrucor2v

Description: Version of dtrucor2 with a disjoint variable condition, which does not require ax-13 (nor ax-4 , ax-5 , ax-7 , ax-12 ). (Contributed by BJ, 16-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-dtrucor2v.1 x = y x y
Assertion bj-dtrucor2v φ ¬ φ

Proof

Step Hyp Ref Expression
1 bj-dtrucor2v.1 x = y x y
2 ax6ev x x = y
3 1 necon2bi x = y ¬ x = y
4 pm2.01 x = y ¬ x = y ¬ x = y
5 3 4 ax-mp ¬ x = y
6 5 nex ¬ x x = y
7 2 6 pm2.24ii φ ¬ φ