Metamath Proof Explorer


Theorem bj-endbase

Description: Base set of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-endval.c φ C Cat
bj-endval.x φ X Base C
Assertion bj-endbase Could not format assertion : No typesetting found for |- ( ph -> ( Base ` ( ( End ` C ) ` X ) ) = ( X ( Hom ` C ) X ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-endval.c φ C Cat
2 bj-endval.x φ X Base C
3 baseid Base = Slot Base ndx
4 fvexd Could not format ( ph -> ( ( End ` C ) ` X ) e. _V ) : No typesetting found for |- ( ph -> ( ( End ` C ) ` X ) e. _V ) with typecode |-
5 3 4 strfvnd Could not format ( ph -> ( Base ` ( ( End ` C ) ` X ) ) = ( ( ( End ` C ) ` X ) ` ( Base ` ndx ) ) ) : No typesetting found for |- ( ph -> ( Base ` ( ( End ` C ) ` X ) ) = ( ( ( End ` C ) ` X ) ` ( Base ` ndx ) ) ) with typecode |-
6 1 2 bj-endval Could not format ( ph -> ( ( End ` C ) ` X ) = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) : No typesetting found for |- ( ph -> ( ( End ` C ) ` X ) = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) with typecode |-
7 6 fveq1d Could not format ( ph -> ( ( ( End ` C ) ` X ) ` ( Base ` ndx ) ) = ( { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ` ( Base ` ndx ) ) ) : No typesetting found for |- ( ph -> ( ( ( End ` C ) ` X ) ` ( Base ` ndx ) ) = ( { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ` ( Base ` ndx ) ) ) with typecode |-
8 basendxnplusgndx Base ndx + ndx
9 fvex Base ndx V
10 ovex X Hom C X V
11 9 10 fvpr1 Base ndx + ndx Base ndx X Hom C X + ndx X X comp C X Base ndx = X Hom C X
12 8 11 mp1i φ Base ndx X Hom C X + ndx X X comp C X Base ndx = X Hom C X
13 5 7 12 3eqtrd Could not format ( ph -> ( Base ` ( ( End ` C ) ` X ) ) = ( X ( Hom ` C ) X ) ) : No typesetting found for |- ( ph -> ( Base ` ( ( End ` C ) ` X ) ) = ( X ( Hom ` C ) X ) ) with typecode |-