Metamath Proof Explorer


Theorem bj-endcomp

Description: Composition law of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-endval.c φ C Cat
bj-endval.x φ X Base C
Assertion bj-endcomp φ + End C X = X X comp C X

Proof

Step Hyp Ref Expression
1 bj-endval.c φ C Cat
2 bj-endval.x φ X Base C
3 plusgid + 𝑔 = Slot + ndx
4 fvexd φ End C X V
5 3 4 strfvnd φ + End C X = End C X + ndx
6 1 2 bj-endval φ End C X = Base ndx X Hom C X + ndx X X comp C X
7 6 fveq1d φ End C X + ndx = Base ndx X Hom C X + ndx X X comp C X + ndx
8 basendxnplusgndx Base ndx + ndx
9 fvex + ndx V
10 ovex X X comp C X V
11 9 10 fvpr2 Base ndx + ndx Base ndx X Hom C X + ndx X X comp C X + ndx = X X comp C X
12 8 11 mp1i φ Base ndx X Hom C X + ndx X X comp C X + ndx = X X comp C X
13 5 7 12 3eqtrd φ + End C X = X X comp C X