Metamath Proof Explorer


Theorem bj-endcomp

Description: Composition law of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-endval.c φ C Cat
bj-endval.x φ X Base C
Assertion bj-endcomp Could not format assertion : No typesetting found for |- ( ph -> ( +g ` ( ( End ` C ) ` X ) ) = ( <. X , X >. ( comp ` C ) X ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-endval.c φ C Cat
2 bj-endval.x φ X Base C
3 plusgid + 𝑔 = Slot + ndx
4 fvexd Could not format ( ph -> ( ( End ` C ) ` X ) e. _V ) : No typesetting found for |- ( ph -> ( ( End ` C ) ` X ) e. _V ) with typecode |-
5 3 4 strfvnd Could not format ( ph -> ( +g ` ( ( End ` C ) ` X ) ) = ( ( ( End ` C ) ` X ) ` ( +g ` ndx ) ) ) : No typesetting found for |- ( ph -> ( +g ` ( ( End ` C ) ` X ) ) = ( ( ( End ` C ) ` X ) ` ( +g ` ndx ) ) ) with typecode |-
6 1 2 bj-endval Could not format ( ph -> ( ( End ` C ) ` X ) = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) : No typesetting found for |- ( ph -> ( ( End ` C ) ` X ) = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) with typecode |-
7 6 fveq1d Could not format ( ph -> ( ( ( End ` C ) ` X ) ` ( +g ` ndx ) ) = ( { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ` ( +g ` ndx ) ) ) : No typesetting found for |- ( ph -> ( ( ( End ` C ) ` X ) ` ( +g ` ndx ) ) = ( { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ` ( +g ` ndx ) ) ) with typecode |-
8 basendxnplusgndx Base ndx + ndx
9 fvex + ndx V
10 ovex X X comp C X V
11 9 10 fvpr2 Base ndx + ndx Base ndx X Hom C X + ndx X X comp C X + ndx = X X comp C X
12 8 11 mp1i φ Base ndx X Hom C X + ndx X X comp C X + ndx = X X comp C X
13 5 7 12 3eqtrd Could not format ( ph -> ( +g ` ( ( End ` C ) ` X ) ) = ( <. X , X >. ( comp ` C ) X ) ) : No typesetting found for |- ( ph -> ( +g ` ( ( End ` C ) ` X ) ) = ( <. X , X >. ( comp ` C ) X ) ) with typecode |-