Metamath Proof Explorer


Theorem bj-endval

Description: Value of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-endval.c φ C Cat
bj-endval.x φ X Base C
Assertion bj-endval φ End C X = Base ndx X Hom C X + ndx X X comp C X

Proof

Step Hyp Ref Expression
1 bj-endval.c φ C Cat
2 bj-endval.x φ X Base C
3 df-bj-end End = c Cat x Base c Base ndx x Hom c x + ndx x x comp c x
4 fveq2 c = C Base c = Base C
5 fveq2 c = C Hom c = Hom C
6 5 oveqd c = C x Hom c x = x Hom C x
7 6 opeq2d c = C Base ndx x Hom c x = Base ndx x Hom C x
8 fveq2 c = C comp c = comp C
9 8 oveqd c = C x x comp c x = x x comp C x
10 9 opeq2d c = C + ndx x x comp c x = + ndx x x comp C x
11 7 10 preq12d c = C Base ndx x Hom c x + ndx x x comp c x = Base ndx x Hom C x + ndx x x comp C x
12 4 11 mpteq12dv c = C x Base c Base ndx x Hom c x + ndx x x comp c x = x Base C Base ndx x Hom C x + ndx x x comp C x
13 fvex Base C V
14 13 mptex x Base C Base ndx x Hom C x + ndx x x comp C x V
15 14 a1i φ x Base C Base ndx x Hom C x + ndx x x comp C x V
16 3 12 1 15 fvmptd3 φ End C = x Base C Base ndx x Hom C x + ndx x x comp C x
17 id x = X x = X
18 17 17 oveq12d x = X x Hom C x = X Hom C X
19 18 opeq2d x = X Base ndx x Hom C x = Base ndx X Hom C X
20 17 17 opeq12d x = X x x = X X
21 20 17 oveq12d x = X x x comp C x = X X comp C X
22 21 opeq2d x = X + ndx x x comp C x = + ndx X X comp C X
23 19 22 preq12d x = X Base ndx x Hom C x + ndx x x comp C x = Base ndx X Hom C X + ndx X X comp C X
24 23 adantl φ x = X Base ndx x Hom C x + ndx x x comp C x = Base ndx X Hom C X + ndx X X comp C X
25 prex Base ndx X Hom C X + ndx X X comp C X V
26 25 a1i φ Base ndx X Hom C X + ndx X X comp C X V
27 16 24 2 26 fvmptd φ End C X = Base ndx X Hom C X + ndx X X comp C X