Metamath Proof Explorer


Theorem bj-equsvt

Description: A variant of equsv . (Contributed by BJ, 7-Oct-2024)

Ref Expression
Assertion bj-equsvt Ⅎ' x φ x x = y φ φ

Proof

Step Hyp Ref Expression
1 bj-19.23t Ⅎ' x φ x x = y φ x x = y φ
2 ax6ev x x = y
3 2 a1bi φ x x = y φ
4 1 3 bitr4di Ⅎ' x φ x x = y φ φ