Metamath Proof Explorer


Theorem bj-exalims

Description: Distributing quantifiers over a nested implication. (Almost) the general statement that spimfw proves. (Contributed by BJ, 29-Sep-2019)

Ref Expression
Hypothesis bj-exalims.1 x φ ¬ χ x ¬ χ
Assertion bj-exalims x φ ψ χ x φ x ψ χ

Proof

Step Hyp Ref Expression
1 bj-exalims.1 x φ ¬ χ x ¬ χ
2 bj-exalim x φ ψ χ x φ x ψ x χ
3 eximal x χ χ ¬ χ x ¬ χ
4 1 3 sylibr x φ x χ χ
5 4 a1i x φ ψ χ x φ x χ χ
6 2 5 syldd x φ ψ χ x φ x ψ χ