Metamath Proof Explorer


Theorem bj-exalimsi

Description: An inference for distributing quantifiers over a nested implication. (Almost) the general statement that spimfw proves. (Contributed by BJ, 29-Sep-2019)

Ref Expression
Hypotheses bj-exalimsi.1 φ ψ χ
bj-exalimsi.2 x φ ¬ χ x ¬ χ
Assertion bj-exalimsi x φ x ψ χ

Proof

Step Hyp Ref Expression
1 bj-exalimsi.1 φ ψ χ
2 bj-exalimsi.2 x φ ¬ χ x ¬ χ
3 2 bj-exalims x φ ψ χ x φ x ψ χ
4 3 1 mpg x φ x ψ χ