Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
First-order logic
Adding ax-12
bj-hbext
Next ⟩
bj-nfalt
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-hbext
Description:
Closed form of
hbex
.
(Contributed by
BJ
, 10-Oct-2019)
Ref
Expression
Assertion
bj-hbext
⊢
∀
y
∀
x
φ
→
∀
x
φ
→
∃
y
φ
→
∀
x
∃
y
φ
Proof
Step
Hyp
Ref
Expression
1
nfa2
⊢
Ⅎ
x
∀
y
∀
x
φ
→
∀
x
φ
2
hbnt
⊢
∀
x
φ
→
∀
x
φ
→
¬
φ
→
∀
x
¬
φ
3
2
alimi
⊢
∀
y
∀
x
φ
→
∀
x
φ
→
∀
y
¬
φ
→
∀
x
¬
φ
4
bj-hbalt
⊢
∀
y
¬
φ
→
∀
x
¬
φ
→
∀
y
¬
φ
→
∀
x
∀
y
¬
φ
5
3
4
syl
⊢
∀
y
∀
x
φ
→
∀
x
φ
→
∀
y
¬
φ
→
∀
x
∀
y
¬
φ
6
1
5
alrimi
⊢
∀
y
∀
x
φ
→
∀
x
φ
→
∀
x
∀
y
¬
φ
→
∀
x
∀
y
¬
φ
7
hbnt
⊢
∀
x
∀
y
¬
φ
→
∀
x
∀
y
¬
φ
→
¬
∀
y
¬
φ
→
∀
x
¬
∀
y
¬
φ
8
6
7
syl
⊢
∀
y
∀
x
φ
→
∀
x
φ
→
¬
∀
y
¬
φ
→
∀
x
¬
∀
y
¬
φ
9
df-ex
⊢
∃
y
φ
↔
¬
∀
y
¬
φ
10
9
bicomi
⊢
¬
∀
y
¬
φ
↔
∃
y
φ
11
10
albii
⊢
∀
x
¬
∀
y
¬
φ
↔
∀
x
∃
y
φ
12
8
10
11
3imtr3g
⊢
∀
y
∀
x
φ
→
∀
x
φ
→
∃
y
φ
→
∀
x
∃
y
φ