Metamath Proof Explorer


Theorem bj-hbext

Description: Closed form of hbex . (Contributed by BJ, 10-Oct-2019)

Ref Expression
Assertion bj-hbext yxφxφyφxyφ

Proof

Step Hyp Ref Expression
1 nfa2 xyxφxφ
2 hbnt xφxφ¬φx¬φ
3 2 alimi yxφxφy¬φx¬φ
4 bj-hbalt y¬φx¬φy¬φxy¬φ
5 3 4 syl yxφxφy¬φxy¬φ
6 1 5 alrimi yxφxφxy¬φxy¬φ
7 hbnt xy¬φxy¬φ¬y¬φx¬y¬φ
8 6 7 syl yxφxφ¬y¬φx¬y¬φ
9 df-ex yφ¬y¬φ
10 9 bicomi ¬y¬φyφ
11 10 albii x¬y¬φxyφ
12 8 10 11 3imtr3g yxφxφyφxyφ