Metamath Proof Explorer


Theorem bj-hbs1

Description: Version of hbsb2 with a disjoint variable condition, which does not require ax-13 , and removal of ax-13 from hbs1 . (Contributed by BJ, 23-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-hbs1 y x φ x y x φ

Proof

Step Hyp Ref Expression
1 sb6 y x φ x x = y φ
2 1 biimpri x x = y φ y x φ
3 2 axc4i x x = y φ x y x φ
4 1 3 sylbi y x φ x y x φ