Metamath Proof Explorer


Theorem bj-hbsb2av

Description: Version of hbsb2a with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 11-Sep-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-hbsb2av y x y φ x y x φ

Proof

Step Hyp Ref Expression
1 sb4av y x y φ x x = y φ
2 sb6 y x φ x x = y φ
3 2 biimpri x x = y φ y x φ
4 3 axc4i x x = y φ x y x φ
5 1 4 syl y x y φ x y x φ