Metamath Proof Explorer


Theorem bj-nfdt

Description: Closed form of nf5d and nf5dh . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion bj-nfdt x φ ψ x ψ φ x φ φ x ψ

Proof

Step Hyp Ref Expression
1 bj-nfdt0 x φ ψ x ψ x φ x ψ
2 1 imim2d x φ ψ x ψ φ x φ φ x ψ