Metamath Proof Explorer


Theorem bj-nnfa1

Description: See nfa1 . (Contributed by BJ, 12-Aug-2023) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnfa1 Ⅎ' x x φ

Proof

Step Hyp Ref Expression
1 hbe1a x x φ x φ
2 bj-modal4 x φ x x φ
3 df-bj-nnf Ⅎ' x x φ x x φ x φ x φ x x φ
4 1 2 3 mpbir2an Ⅎ' x x φ