Metamath Proof Explorer


Theorem bj-nnfai

Description: Nonfreeness implies the equivalent of ax-5 , inference form. See nf5ri . (Contributed by BJ, 22-Sep-2024)

Ref Expression
Hypothesis bj-nnfai.1 Ⅎ' x φ
Assertion bj-nnfai φ x φ

Proof

Step Hyp Ref Expression
1 bj-nnfai.1 Ⅎ' x φ
2 bj-nnfa Ⅎ' x φ φ x φ
3 1 2 ax-mp φ x φ