Metamath Proof Explorer


Theorem bj-nnfbid

Description: Nonfreeness in both sides implies nonfreeness in the biconditional, deduction form. (Contributed by BJ, 2-Dec-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-nnfbid.1 φ Ⅎ' x ψ
bj-nnfbid.2 φ Ⅎ' x χ
Assertion bj-nnfbid φ Ⅎ' x ψ χ

Proof

Step Hyp Ref Expression
1 bj-nnfbid.1 φ Ⅎ' x ψ
2 bj-nnfbid.2 φ Ⅎ' x χ
3 bj-nnfim Ⅎ' x ψ Ⅎ' x χ Ⅎ' x ψ χ
4 1 2 3 syl2anc φ Ⅎ' x ψ χ
5 bj-nnfim Ⅎ' x χ Ⅎ' x ψ Ⅎ' x χ ψ
6 2 1 5 syl2anc φ Ⅎ' x χ ψ
7 4 6 bj-nnfand φ Ⅎ' x ψ χ χ ψ
8 dfbi2 ψ χ ψ χ χ ψ
9 8 bj-nnfbii Ⅎ' x ψ χ Ⅎ' x ψ χ χ ψ
10 7 9 sylibr φ Ⅎ' x ψ χ