Metamath Proof Explorer


Theorem bj-nnfbit

Description: Nonfreeness in both sides implies nonfreeness in the biconditional. (Contributed by BJ, 2-Dec-2023) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnfbit Ⅎ' x φ Ⅎ' x ψ Ⅎ' x φ ψ

Proof

Step Hyp Ref Expression
1 bj-nnfim Ⅎ' x φ Ⅎ' x ψ Ⅎ' x φ ψ
2 bj-nnfim Ⅎ' x ψ Ⅎ' x φ Ⅎ' x ψ φ
3 2 ancoms Ⅎ' x φ Ⅎ' x ψ Ⅎ' x ψ φ
4 bj-nnfan Ⅎ' x φ ψ Ⅎ' x ψ φ Ⅎ' x φ ψ ψ φ
5 1 3 4 syl2anc Ⅎ' x φ Ⅎ' x ψ Ⅎ' x φ ψ ψ φ
6 dfbi2 φ ψ φ ψ ψ φ
7 6 bicomi φ ψ ψ φ φ ψ
8 7 bj-nnfbii Ⅎ' x φ ψ ψ φ Ⅎ' x φ ψ
9 5 8 sylib Ⅎ' x φ Ⅎ' x ψ Ⅎ' x φ ψ