Metamath Proof Explorer


Theorem bj-nnfea

Description: Nonfreeness implies the equivalent of ax5ea . (Contributed by BJ, 28-Jul-2023)

Ref Expression
Assertion bj-nnfea Ⅎ' x φ x φ x φ

Proof

Step Hyp Ref Expression
1 bj-nnfe Ⅎ' x φ x φ φ
2 bj-nnfa Ⅎ' x φ φ x φ
3 1 2 syld Ⅎ' x φ x φ x φ