Metamath Proof Explorer


Theorem bj-nnfeai

Description: Nonfreeness implies the equivalent of ax5ea , inference form. (Contributed by BJ, 22-Sep-2024)

Ref Expression
Hypothesis bj-nnfeai.1 Ⅎ' x φ
Assertion bj-nnfeai x φ x φ

Proof

Step Hyp Ref Expression
1 bj-nnfeai.1 Ⅎ' x φ
2 bj-nnfea Ⅎ' x φ x φ x φ
3 1 2 ax-mp x φ x φ