Metamath Proof Explorer


Theorem bj-nnfed

Description: Nonfreeness implies the equivalent of ax5e , deduction form. (Contributed by BJ, 2-Dec-2023)

Ref Expression
Hypothesis bj-nnfed.1 φ Ⅎ' x ψ
Assertion bj-nnfed φ x ψ ψ

Proof

Step Hyp Ref Expression
1 bj-nnfed.1 φ Ⅎ' x ψ
2 bj-nnfe Ⅎ' x ψ x ψ ψ
3 1 2 syl φ x ψ ψ