Metamath Proof Explorer


Theorem bj-nnfor

Description: Nonfreeness in both disjuncts implies nonfreeness in the disjunction. (Contributed by BJ, 19-Nov-2023) In classical logic, there is a proof using the definition of disjunction in terms of implication and negation, so using bj-nnfim , bj-nnfnt and bj-nnfbi , but we want a proof valid in intuitionistic logic. (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnfor Ⅎ' x φ Ⅎ' x ψ Ⅎ' x φ ψ

Proof

Step Hyp Ref Expression
1 df-bj-nnf Ⅎ' x φ x φ φ φ x φ
2 df-bj-nnf Ⅎ' x ψ x ψ ψ ψ x ψ
3 19.43 x φ ψ x φ x ψ
4 pm3.48 x φ φ x ψ ψ x φ x ψ φ ψ
5 3 4 syl5bi x φ φ x ψ ψ x φ ψ φ ψ
6 pm3.48 φ x φ ψ x ψ φ ψ x φ x ψ
7 19.33 x φ x ψ x φ ψ
8 6 7 syl6 φ x φ ψ x ψ φ ψ x φ ψ
9 5 8 anim12i x φ φ x ψ ψ φ x φ ψ x ψ x φ ψ φ ψ φ ψ x φ ψ
10 9 an4s x φ φ φ x φ x ψ ψ ψ x ψ x φ ψ φ ψ φ ψ x φ ψ
11 1 2 10 syl2anb Ⅎ' x φ Ⅎ' x ψ x φ ψ φ ψ φ ψ x φ ψ
12 df-bj-nnf Ⅎ' x φ ψ x φ ψ φ ψ φ ψ x φ ψ
13 11 12 sylibr Ⅎ' x φ Ⅎ' x ψ Ⅎ' x φ ψ