Metamath Proof Explorer


Theorem bj-nnford

Description: Nonfreeness in both disjuncts implies nonfreeness in the disjunction, deduction form. See comments for bj-nnfor and bj-nnfand . (Contributed by BJ, 2-Dec-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-nnford.1 φℲ'xψ
bj-nnford.2 φℲ'xχ
Assertion bj-nnford φℲ'xψχ

Proof

Step Hyp Ref Expression
1 bj-nnford.1 φℲ'xψ
2 bj-nnford.2 φℲ'xχ
3 19.43 xψχxψxχ
4 1 bj-nnfed φxψψ
5 2 bj-nnfed φxχχ
6 4 5 orim12d φxψxχψχ
7 3 6 biimtrid φxψχψχ
8 1 bj-nnfad φψxψ
9 2 bj-nnfad φχxχ
10 8 9 orim12d φψχxψxχ
11 19.33 xψxχxψχ
12 10 11 syl6 φψχxψχ
13 df-bj-nnf Ⅎ'xψχxψχψχψχxψχ
14 7 12 13 sylanbrc φℲ'xψχ