Metamath Proof Explorer


Theorem bj-nnford

Description: Nonfreeness in both disjuncts implies nonfreeness in the disjunction, deduction form. See comments for bj-nnfor and bj-nnfand . (Contributed by BJ, 2-Dec-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-nnford.1 φ Ⅎ' x ψ
bj-nnford.2 φ Ⅎ' x χ
Assertion bj-nnford φ Ⅎ' x ψ χ

Proof

Step Hyp Ref Expression
1 bj-nnford.1 φ Ⅎ' x ψ
2 bj-nnford.2 φ Ⅎ' x χ
3 19.43 x ψ χ x ψ x χ
4 1 bj-nnfed φ x ψ ψ
5 2 bj-nnfed φ x χ χ
6 4 5 orim12d φ x ψ x χ ψ χ
7 3 6 syl5bi φ x ψ χ ψ χ
8 1 bj-nnfad φ ψ x ψ
9 2 bj-nnfad φ χ x χ
10 8 9 orim12d φ ψ χ x ψ x χ
11 19.33 x ψ x χ x ψ χ
12 10 11 syl6 φ ψ χ x ψ χ
13 df-bj-nnf Ⅎ' x ψ χ x ψ χ ψ χ ψ χ x ψ χ
14 7 12 13 sylanbrc φ Ⅎ' x ψ χ