Metamath Proof Explorer


Theorem bj-nnfv

Description: A non-occurring variable is nonfree in a formula. (Contributed by BJ, 28-Jul-2023)

Ref Expression
Assertion bj-nnfv Ⅎ' x φ

Proof

Step Hyp Ref Expression
1 ax5e x φ φ
2 ax-5 φ x φ
3 df-bj-nnf Ⅎ' x φ x φ φ φ x φ
4 1 2 3 mpbir2an Ⅎ' x φ