Metamath Proof Explorer


Theorem bj-pm11.53a

Description: A variant of pm11.53v . One can similarly prove a variant with DV ( y , ph ) and A. y F// x ps instead of DV ( x , ps ) and A. x F// y ph . (Contributed by BJ, 7-Oct-2024)

Ref Expression
Assertion bj-pm11.53a x Ⅎ' y φ x y φ ψ x φ y ψ

Proof

Step Hyp Ref Expression
1 bj-nnfv Ⅎ' x y ψ
2 bj-pm11.53vw x Ⅎ' y φ Ⅎ' x y ψ x y φ ψ x φ y ψ
3 1 2 mpan2 x Ⅎ' y φ x y φ ψ x φ y ψ