Metamath Proof Explorer


Theorem bj-spimtv

Description: Version of spimt with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 14-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-spimtv x ψ x x = y φ ψ x φ ψ

Proof

Step Hyp Ref Expression
1 ax6ev x x = y
2 exim x x = y φ ψ x x = y x φ ψ
3 1 2 mpi x x = y φ ψ x φ ψ
4 19.35 x φ ψ x φ x ψ
5 3 4 sylib x x = y φ ψ x φ x ψ
6 19.9t x ψ x ψ ψ
7 6 biimpd x ψ x ψ ψ
8 5 7 sylan9r x ψ x x = y φ ψ x φ ψ