Metamath Proof Explorer


Theorem bj-ssbid1

Description: A special case of sbequ1 . (Contributed by BJ, 22-Dec-2020)

Ref Expression
Assertion bj-ssbid1 φ x x φ

Proof

Step Hyp Ref Expression
1 equid x = x
2 sbequ1 x = x φ x x φ
3 1 2 ax-mp φ x x φ