Metamath Proof Explorer


Theorem bj-substw

Description: Weak form of the LHS of bj-substax12 proved from the core axiom schemes. Compare ax12w . (Contributed by BJ, 26-May-2024) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-substw.is x = t φ ψ
Assertion bj-substw x x = t φ x x = t φ

Proof

Step Hyp Ref Expression
1 bj-substw.is x = t φ ψ
2 1 pm5.32i x = t φ x = t ψ
3 2 exbii x x = t φ x x = t ψ
4 19.41v x x = t ψ x x = t ψ
5 3 4 bitri x x = t φ x x = t ψ
6 1 biimprcd ψ x = t φ
7 6 alrimiv ψ x x = t φ
8 5 7 simplbiim x x = t φ x x = t φ