Metamath Proof Explorer


Theorem bj-wnf1

Description: When ph is substituted for ps , this is the first half of nonfreness ( . -> A. ) of the weak form of nonfreeness ( E. -> A. ) . (Contributed by BJ, 9-Dec-2023)

Ref Expression
Assertion bj-wnf1 x φ x ψ x x φ x ψ

Proof

Step Hyp Ref Expression
1 bj-modal4e x x φ x φ
2 hba1 x ψ x x ψ
3 1 2 imim12i x φ x ψ x x φ x x ψ
4 19.38 x x φ x x ψ x x φ x ψ
5 3 4 syl x φ x ψ x x φ x ψ