Metamath Proof Explorer


Theorem bj-wnf2

Description: When ph is substituted for ps , this is the first half of nonfreness ( . -> A. ) of the weak form of nonfreeness ( E. -> A. ) . (Contributed by BJ, 9-Dec-2023)

Ref Expression
Assertion bj-wnf2 x x φ x ψ x φ x ψ

Proof

Step Hyp Ref Expression
1 hbe1 x φ x x φ
2 bj-eximcom x x φ x ψ x x φ x x ψ
3 hbe1a x x ψ x ψ
4 1 2 3 syl56 x x φ x ψ x φ x ψ