Metamath Proof Explorer


Theorem bl2ioo

Description: A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007) (Revised by Mario Carneiro, 13-Nov-2013)

Ref Expression
Hypothesis remet.1 D = abs 2
Assertion bl2ioo A B A ball D B = A B A + B

Proof

Step Hyp Ref Expression
1 remet.1 D = abs 2
2 1 remetdval A x A D x = A x
3 recn A A
4 recn x x
5 abssub A x A x = x A
6 3 4 5 syl2an A x A x = x A
7 2 6 eqtrd A x A D x = x A
8 7 breq1d A x A D x < B x A < B
9 8 adantlr A B x A D x < B x A < B
10 absdiflt x A B x A < B A B < x x < A + B
11 10 3expb x A B x A < B A B < x x < A + B
12 11 ancoms A B x x A < B A B < x x < A + B
13 9 12 bitrd A B x A D x < B A B < x x < A + B
14 13 pm5.32da A B x A D x < B x A B < x x < A + B
15 3anass x A B < x x < A + B x A B < x x < A + B
16 14 15 bitr4di A B x A D x < B x A B < x x < A + B
17 rexr B B *
18 1 rexmet D ∞Met
19 elbl D ∞Met A B * x A ball D B x A D x < B
20 18 19 mp3an1 A B * x A ball D B x A D x < B
21 17 20 sylan2 A B x A ball D B x A D x < B
22 resubcl A B A B
23 readdcl A B A + B
24 rexr A B A B *
25 rexr A + B A + B *
26 elioo2 A B * A + B * x A B A + B x A B < x x < A + B
27 24 25 26 syl2an A B A + B x A B A + B x A B < x x < A + B
28 22 23 27 syl2anc A B x A B A + B x A B < x x < A + B
29 16 21 28 3bitr4d A B x A ball D B x A B A + B
30 29 eqrdv A B A ball D B = A B A + B