Metamath Proof Explorer


Theorem blbas

Description: The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006) (Revised by Mario Carneiro, 15-Jan-2014)

Ref Expression
Assertion blbas D ∞Met X ran ball D TopBases

Proof

Step Hyp Ref Expression
1 blin2 D ∞Met X z x y x ran ball D y ran ball D r + z ball D r x y
2 simpll D ∞Met X z x y x ran ball D y ran ball D D ∞Met X
3 elinel1 z x y z x
4 elunii z x x ran ball D z ran ball D
5 3 4 sylan z x y x ran ball D z ran ball D
6 5 ad2ant2lr D ∞Met X z x y x ran ball D y ran ball D z ran ball D
7 unirnbl D ∞Met X ran ball D = X
8 7 ad2antrr D ∞Met X z x y x ran ball D y ran ball D ran ball D = X
9 6 8 eleqtrd D ∞Met X z x y x ran ball D y ran ball D z X
10 blssex D ∞Met X z X b ran ball D z b b x y r + z ball D r x y
11 2 9 10 syl2anc D ∞Met X z x y x ran ball D y ran ball D b ran ball D z b b x y r + z ball D r x y
12 1 11 mpbird D ∞Met X z x y x ran ball D y ran ball D b ran ball D z b b x y
13 12 ex D ∞Met X z x y x ran ball D y ran ball D b ran ball D z b b x y
14 13 ralrimdva D ∞Met X x ran ball D y ran ball D z x y b ran ball D z b b x y
15 14 ralrimivv D ∞Met X x ran ball D y ran ball D z x y b ran ball D z b b x y
16 fvex ball D V
17 16 rnex ran ball D V
18 isbasis2g ran ball D V ran ball D TopBases x ran ball D y ran ball D z x y b ran ball D z b b x y
19 17 18 ax-mp ran ball D TopBases x ran ball D y ran ball D z x y b ran ball D z b b x y
20 15 19 sylibr D ∞Met X ran ball D TopBases