Step |
Hyp |
Ref |
Expression |
1 |
|
mopni.1 |
|
2 |
|
blcld.3 |
|
3 |
1
|
mopnuni |
|
4 |
3
|
3ad2ant1 |
|
5 |
4
|
difeq1d |
|
6 |
|
difssd |
|
7 |
|
simpl3 |
|
8 |
|
simpl1 |
|
9 |
|
simpl2 |
|
10 |
|
eldifi |
|
11 |
10
|
adantl |
|
12 |
|
xmetcl |
|
13 |
8 9 11 12
|
syl3anc |
|
14 |
|
eldif |
|
15 |
|
oveq2 |
|
16 |
15
|
breq1d |
|
17 |
16 2
|
elrab2 |
|
18 |
17
|
simplbi2 |
|
19 |
18
|
con3dimp |
|
20 |
14 19
|
sylbi |
|
21 |
20
|
adantl |
|
22 |
|
xrltnle |
|
23 |
7 13 22
|
syl2anc |
|
24 |
21 23
|
mpbird |
|
25 |
|
qbtwnxr |
|
26 |
7 13 24 25
|
syl3anc |
|
27 |
|
qre |
|
28 |
8
|
adantr |
|
29 |
11
|
adantr |
|
30 |
13
|
adantr |
|
31 |
|
rexr |
|
32 |
31
|
ad2antrl |
|
33 |
32
|
xnegcld |
|
34 |
30 33
|
xaddcld |
|
35 |
|
blelrn |
|
36 |
28 29 34 35
|
syl3anc |
|
37 |
|
simprrr |
|
38 |
|
xposdif |
|
39 |
32 30 38
|
syl2anc |
|
40 |
37 39
|
mpbid |
|
41 |
|
xblcntr |
|
42 |
28 29 34 40 41
|
syl112anc |
|
43 |
|
incom |
|
44 |
9
|
adantr |
|
45 |
|
xaddcom |
|
46 |
32 34 45
|
syl2anc |
|
47 |
|
simprl |
|
48 |
|
xnpcan |
|
49 |
30 47 48
|
syl2anc |
|
50 |
46 49
|
eqtrd |
|
51 |
30
|
xrleidd |
|
52 |
50 51
|
eqbrtrd |
|
53 |
|
bldisj |
|
54 |
28 44 29 32 34 52 53
|
syl33anc |
|
55 |
43 54
|
eqtrid |
|
56 |
|
blssm |
|
57 |
28 29 34 56
|
syl3anc |
|
58 |
|
reldisj |
|
59 |
57 58
|
syl |
|
60 |
55 59
|
mpbid |
|
61 |
7
|
adantr |
|
62 |
|
simprrl |
|
63 |
1 2
|
blsscls2 |
|
64 |
28 44 61 32 62 63
|
syl23anc |
|
65 |
64
|
sscond |
|
66 |
60 65
|
sstrd |
|
67 |
|
eleq2 |
|
68 |
|
sseq1 |
|
69 |
67 68
|
anbi12d |
|
70 |
69
|
rspcev |
|
71 |
36 42 66 70
|
syl12anc |
|
72 |
71
|
expr |
|
73 |
27 72
|
sylan2 |
|
74 |
73
|
rexlimdva |
|
75 |
26 74
|
mpd |
|
76 |
75
|
ralrimiva |
|
77 |
1
|
elmopn |
|
78 |
77
|
3ad2ant1 |
|
79 |
6 76 78
|
mpbir2and |
|
80 |
5 79
|
eqeltrrd |
|
81 |
1
|
mopntop |
|
82 |
81
|
3ad2ant1 |
|
83 |
2
|
ssrab3 |
|
84 |
83 4
|
sseqtrid |
|
85 |
|
eqid |
|
86 |
85
|
iscld2 |
|
87 |
82 84 86
|
syl2anc |
|
88 |
80 87
|
mpbird |
|