Metamath Proof Explorer


Theorem blcls

Description: The closure of an open ball in a metric space is contained in the corresponding closed ball. (Equality need not hold; for example, with the discrete metric, the closed ball of radius 1 is the whole space, but the open ball of radius 1 is just a point, whose closure is also a point.) (Contributed by Mario Carneiro, 31-Dec-2013)

Ref Expression
Hypotheses mopni.1 J = MetOpen D
blcld.3 S = z X | P D z R
Assertion blcls D ∞Met X P X R * cls J P ball D R S

Proof

Step Hyp Ref Expression
1 mopni.1 J = MetOpen D
2 blcld.3 S = z X | P D z R
3 1 2 blcld D ∞Met X P X R * S Clsd J
4 blssm D ∞Met X P X R * P ball D R X
5 elbl D ∞Met X P X R * z P ball D R z X P D z < R
6 xmetcl D ∞Met X P X z X P D z *
7 6 3expa D ∞Met X P X z X P D z *
8 7 3adantl3 D ∞Met X P X R * z X P D z *
9 simpl3 D ∞Met X P X R * z X R *
10 xrltle P D z * R * P D z < R P D z R
11 8 9 10 syl2anc D ∞Met X P X R * z X P D z < R P D z R
12 11 expimpd D ∞Met X P X R * z X P D z < R P D z R
13 5 12 sylbid D ∞Met X P X R * z P ball D R P D z R
14 13 ralrimiv D ∞Met X P X R * z P ball D R P D z R
15 ssrab P ball D R z X | P D z R P ball D R X z P ball D R P D z R
16 4 14 15 sylanbrc D ∞Met X P X R * P ball D R z X | P D z R
17 16 2 sseqtrrdi D ∞Met X P X R * P ball D R S
18 eqid J = J
19 18 clsss2 S Clsd J P ball D R S cls J P ball D R S
20 3 17 19 syl2anc D ∞Met X P X R * cls J P ball D R S