Metamath Proof Explorer


Theorem blcom

Description: Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014)

Ref Expression
Assertion blcom D ∞Met X R * P X A X A P ball D R P A ball D R

Proof

Step Hyp Ref Expression
1 elbl2 D ∞Met X R * P X A X A P ball D R P D A < R
2 elbl3 D ∞Met X R * A X P X P A ball D R P D A < R
3 2 ancom2s D ∞Met X R * P X A X P A ball D R P D A < R
4 1 3 bitr4d D ∞Met X R * P X A X A P ball D R P A ball D R