Metamath Proof Explorer


Theorem bldisj

Description: Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013)

Ref Expression
Assertion bldisj D ∞Met X P X Q X R * S * R + 𝑒 S P D Q P ball D R Q ball D S =

Proof

Step Hyp Ref Expression
1 simpr3 D ∞Met X P X Q X R * S * R + 𝑒 S P D Q R + 𝑒 S P D Q
2 simpr1 D ∞Met X P X Q X R * S * R + 𝑒 S P D Q R *
3 simpr2 D ∞Met X P X Q X R * S * R + 𝑒 S P D Q S *
4 2 3 xaddcld D ∞Met X P X Q X R * S * R + 𝑒 S P D Q R + 𝑒 S *
5 xmetcl D ∞Met X P X Q X P D Q *
6 5 adantr D ∞Met X P X Q X R * S * R + 𝑒 S P D Q P D Q *
7 4 6 xrlenltd D ∞Met X P X Q X R * S * R + 𝑒 S P D Q R + 𝑒 S P D Q ¬ P D Q < R + 𝑒 S
8 1 7 mpbid D ∞Met X P X Q X R * S * R + 𝑒 S P D Q ¬ P D Q < R + 𝑒 S
9 elin x P ball D R Q ball D S x P ball D R x Q ball D S
10 simpl1 D ∞Met X P X Q X R * S * R + 𝑒 S P D Q D ∞Met X
11 simpl2 D ∞Met X P X Q X R * S * R + 𝑒 S P D Q P X
12 elbl D ∞Met X P X R * x P ball D R x X P D x < R
13 10 11 2 12 syl3anc D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x P ball D R x X P D x < R
14 simpl3 D ∞Met X P X Q X R * S * R + 𝑒 S P D Q Q X
15 elbl D ∞Met X Q X S * x Q ball D S x X Q D x < S
16 10 14 3 15 syl3anc D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x Q ball D S x X Q D x < S
17 13 16 anbi12d D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x P ball D R x Q ball D S x X P D x < R x X Q D x < S
18 anandi x X P D x < R Q D x < S x X P D x < R x X Q D x < S
19 17 18 bitr4di D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x P ball D R x Q ball D S x X P D x < R Q D x < S
20 10 adantr D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X D ∞Met X
21 11 adantr D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X P X
22 simpr D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X x X
23 xmetcl D ∞Met X P X x X P D x *
24 20 21 22 23 syl3anc D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X P D x *
25 14 adantr D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X Q X
26 xmetcl D ∞Met X Q X x X Q D x *
27 20 25 22 26 syl3anc D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X Q D x *
28 2 adantr D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X R *
29 3 adantr D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X S *
30 xlt2add P D x * Q D x * R * S * P D x < R Q D x < S P D x + 𝑒 Q D x < R + 𝑒 S
31 24 27 28 29 30 syl22anc D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X P D x < R Q D x < S P D x + 𝑒 Q D x < R + 𝑒 S
32 xmettri3 D ∞Met X P X Q X x X P D Q P D x + 𝑒 Q D x
33 20 21 25 22 32 syl13anc D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X P D Q P D x + 𝑒 Q D x
34 6 adantr D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X P D Q *
35 24 27 xaddcld D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X P D x + 𝑒 Q D x *
36 4 adantr D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X R + 𝑒 S *
37 xrlelttr P D Q * P D x + 𝑒 Q D x * R + 𝑒 S * P D Q P D x + 𝑒 Q D x P D x + 𝑒 Q D x < R + 𝑒 S P D Q < R + 𝑒 S
38 34 35 36 37 syl3anc D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X P D Q P D x + 𝑒 Q D x P D x + 𝑒 Q D x < R + 𝑒 S P D Q < R + 𝑒 S
39 33 38 mpand D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X P D x + 𝑒 Q D x < R + 𝑒 S P D Q < R + 𝑒 S
40 31 39 syld D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X P D x < R Q D x < S P D Q < R + 𝑒 S
41 40 expimpd D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x X P D x < R Q D x < S P D Q < R + 𝑒 S
42 19 41 sylbid D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x P ball D R x Q ball D S P D Q < R + 𝑒 S
43 9 42 syl5bi D ∞Met X P X Q X R * S * R + 𝑒 S P D Q x P ball D R Q ball D S P D Q < R + 𝑒 S
44 8 43 mtod D ∞Met X P X Q X R * S * R + 𝑒 S P D Q ¬ x P ball D R Q ball D S
45 44 eq0rdv D ∞Met X P X Q X R * S * R + 𝑒 S P D Q P ball D R Q ball D S =