Metamath Proof Explorer


Theorem blfps

Description: Mapping of a ball. (Contributed by NM, 7-May-2007) (Revised by Mario Carneiro, 23-Aug-2015) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Assertion blfps DPsMetXballD:X×*𝒫X

Proof

Step Hyp Ref Expression
1 ssrab2 yX|xDy<rX
2 elfvdm DPsMetXXdomPsMet
3 elpw2g XdomPsMetyX|xDy<r𝒫XyX|xDy<rX
4 2 3 syl DPsMetXyX|xDy<r𝒫XyX|xDy<rX
5 1 4 mpbiri DPsMetXyX|xDy<r𝒫X
6 5 a1d DPsMetXxXr*yX|xDy<r𝒫X
7 6 ralrimivv DPsMetXxXr*yX|xDy<r𝒫X
8 eqid xX,r*yX|xDy<r=xX,r*yX|xDy<r
9 8 fmpo xXr*yX|xDy<r𝒫XxX,r*yX|xDy<r:X×*𝒫X
10 7 9 sylib DPsMetXxX,r*yX|xDy<r:X×*𝒫X
11 blfvalps DPsMetXballD=xX,r*yX|xDy<r
12 11 feq1d DPsMetXballD:X×*𝒫XxX,r*yX|xDy<r:X×*𝒫X
13 10 12 mpbird DPsMetXballD:X×*𝒫X