Metamath Proof Explorer


Theorem blin

Description: The intersection of two balls with the same center is the smaller of them. (Contributed by NM, 1-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Assertion blin D ∞Met X P X R * S * P ball D R P ball D S = P ball D if R S R S

Proof

Step Hyp Ref Expression
1 xmetcl D ∞Met X P X x X P D x *
2 1 ad4ant124 D ∞Met X P X R * S * x X P D x *
3 simplrl D ∞Met X P X R * S * x X R *
4 simplrr D ∞Met X P X R * S * x X S *
5 xrltmin P D x * R * S * P D x < if R S R S P D x < R P D x < S
6 2 3 4 5 syl3anc D ∞Met X P X R * S * x X P D x < if R S R S P D x < R P D x < S
7 6 pm5.32da D ∞Met X P X R * S * x X P D x < if R S R S x X P D x < R P D x < S
8 ifcl R * S * if R S R S *
9 elbl D ∞Met X P X if R S R S * x P ball D if R S R S x X P D x < if R S R S
10 9 3expa D ∞Met X P X if R S R S * x P ball D if R S R S x X P D x < if R S R S
11 8 10 sylan2 D ∞Met X P X R * S * x P ball D if R S R S x X P D x < if R S R S
12 elbl D ∞Met X P X R * x P ball D R x X P D x < R
13 12 3expa D ∞Met X P X R * x P ball D R x X P D x < R
14 13 adantrr D ∞Met X P X R * S * x P ball D R x X P D x < R
15 elbl D ∞Met X P X S * x P ball D S x X P D x < S
16 15 3expa D ∞Met X P X S * x P ball D S x X P D x < S
17 16 adantrl D ∞Met X P X R * S * x P ball D S x X P D x < S
18 14 17 anbi12d D ∞Met X P X R * S * x P ball D R x P ball D S x X P D x < R x X P D x < S
19 elin x P ball D R P ball D S x P ball D R x P ball D S
20 anandi x X P D x < R P D x < S x X P D x < R x X P D x < S
21 18 19 20 3bitr4g D ∞Met X P X R * S * x P ball D R P ball D S x X P D x < R P D x < S
22 7 11 21 3bitr4rd D ∞Met X P X R * S * x P ball D R P ball D S x P ball D if R S R S
23 22 eqrdv D ∞Met X P X R * S * P ball D R P ball D S = P ball D if R S R S