Metamath Proof Explorer


Theorem blin2

Description: Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013)

Ref Expression
Assertion blin2 D ∞Met X P B C B ran ball D C ran ball D x + P ball D x B C

Proof

Step Hyp Ref Expression
1 simpll D ∞Met X P B C B ran ball D C ran ball D D ∞Met X
2 simprl D ∞Met X P B C B ran ball D C ran ball D B ran ball D
3 simplr D ∞Met X P B C B ran ball D C ran ball D P B C
4 3 elin1d D ∞Met X P B C B ran ball D C ran ball D P B
5 blss D ∞Met X B ran ball D P B y + P ball D y B
6 1 2 4 5 syl3anc D ∞Met X P B C B ran ball D C ran ball D y + P ball D y B
7 simprr D ∞Met X P B C B ran ball D C ran ball D C ran ball D
8 3 elin2d D ∞Met X P B C B ran ball D C ran ball D P C
9 blss D ∞Met X C ran ball D P C z + P ball D z C
10 1 7 8 9 syl3anc D ∞Met X P B C B ran ball D C ran ball D z + P ball D z C
11 reeanv y + z + P ball D y B P ball D z C y + P ball D y B z + P ball D z C
12 ss2in P ball D y B P ball D z C P ball D y P ball D z B C
13 inss1 B C B
14 blf D ∞Met X ball D : X × * 𝒫 X
15 frn ball D : X × * 𝒫 X ran ball D 𝒫 X
16 1 14 15 3syl D ∞Met X P B C B ran ball D C ran ball D ran ball D 𝒫 X
17 16 2 sseldd D ∞Met X P B C B ran ball D C ran ball D B 𝒫 X
18 17 elpwid D ∞Met X P B C B ran ball D C ran ball D B X
19 13 18 sstrid D ∞Met X P B C B ran ball D C ran ball D B C X
20 19 3 sseldd D ∞Met X P B C B ran ball D C ran ball D P X
21 1 20 jca D ∞Met X P B C B ran ball D C ran ball D D ∞Met X P X
22 rpxr y + y *
23 rpxr z + z *
24 22 23 anim12i y + z + y * z *
25 blin D ∞Met X P X y * z * P ball D y P ball D z = P ball D if y z y z
26 21 24 25 syl2an D ∞Met X P B C B ran ball D C ran ball D y + z + P ball D y P ball D z = P ball D if y z y z
27 26 sseq1d D ∞Met X P B C B ran ball D C ran ball D y + z + P ball D y P ball D z B C P ball D if y z y z B C
28 ifcl y + z + if y z y z +
29 oveq2 x = if y z y z P ball D x = P ball D if y z y z
30 29 sseq1d x = if y z y z P ball D x B C P ball D if y z y z B C
31 30 rspcev if y z y z + P ball D if y z y z B C x + P ball D x B C
32 31 ex if y z y z + P ball D if y z y z B C x + P ball D x B C
33 28 32 syl y + z + P ball D if y z y z B C x + P ball D x B C
34 33 adantl D ∞Met X P B C B ran ball D C ran ball D y + z + P ball D if y z y z B C x + P ball D x B C
35 27 34 sylbid D ∞Met X P B C B ran ball D C ran ball D y + z + P ball D y P ball D z B C x + P ball D x B C
36 12 35 syl5 D ∞Met X P B C B ran ball D C ran ball D y + z + P ball D y B P ball D z C x + P ball D x B C
37 36 rexlimdvva D ∞Met X P B C B ran ball D C ran ball D y + z + P ball D y B P ball D z C x + P ball D x B C
38 11 37 syl5bir D ∞Met X P B C B ran ball D C ran ball D y + P ball D y B z + P ball D z C x + P ball D x B C
39 6 10 38 mp2and D ∞Met X P B C B ran ball D C ran ball D x + P ball D x B C