Metamath Proof Explorer


Theorem blocn

Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of Kreyszig p. 97. (Contributed by NM, 25-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses blocn.8 C = IndMet U
blocn.d D = IndMet W
blocn.j J = MetOpen C
blocn.k K = MetOpen D
blocn.5 B = U BLnOp W
blocn.u U NrmCVec
blocn.w W NrmCVec
blocn.4 L = U LnOp W
Assertion blocn T L T J Cn K T B

Proof

Step Hyp Ref Expression
1 blocn.8 C = IndMet U
2 blocn.d D = IndMet W
3 blocn.j J = MetOpen C
4 blocn.k K = MetOpen D
5 blocn.5 B = U BLnOp W
6 blocn.u U NrmCVec
7 blocn.w W NrmCVec
8 blocn.4 L = U LnOp W
9 eleq1 T = if T L T U 0 op W T J Cn K if T L T U 0 op W J Cn K
10 eleq1 T = if T L T U 0 op W T B if T L T U 0 op W B
11 9 10 bibi12d T = if T L T U 0 op W T J Cn K T B if T L T U 0 op W J Cn K if T L T U 0 op W B
12 eqid U 0 op W = U 0 op W
13 12 8 0lno U NrmCVec W NrmCVec U 0 op W L
14 6 7 13 mp2an U 0 op W L
15 14 elimel if T L T U 0 op W L
16 1 2 3 4 8 5 6 7 15 blocni if T L T U 0 op W J Cn K if T L T U 0 op W B
17 11 16 dedth T L T J Cn K T B