Metamath Proof Explorer


Theorem blocn2

Description: A bounded linear operator is continuous. (Contributed by NM, 25-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses blocn.8 C = IndMet U
blocn.d D = IndMet W
blocn.j J = MetOpen C
blocn.k K = MetOpen D
blocn.5 B = U BLnOp W
blocn.u U NrmCVec
blocn.w W NrmCVec
Assertion blocn2 T B T J Cn K

Proof

Step Hyp Ref Expression
1 blocn.8 C = IndMet U
2 blocn.d D = IndMet W
3 blocn.j J = MetOpen C
4 blocn.k K = MetOpen D
5 blocn.5 B = U BLnOp W
6 blocn.u U NrmCVec
7 blocn.w W NrmCVec
8 eqid U LnOp W = U LnOp W
9 8 5 bloln U NrmCVec W NrmCVec T B T U LnOp W
10 6 7 9 mp3an12 T B T U LnOp W
11 1 2 3 4 5 6 7 8 blocn T U LnOp W T J Cn K T B
12 11 biimprd T U LnOp W T B T J Cn K
13 10 12 mpcom T B T J Cn K