Metamath Proof Explorer


Theorem blof

Description: A bounded operator is an operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses blof.1 X = BaseSet U
blof.2 Y = BaseSet W
blof.5 B = U BLnOp W
Assertion blof U NrmCVec W NrmCVec T B T : X Y

Proof

Step Hyp Ref Expression
1 blof.1 X = BaseSet U
2 blof.2 Y = BaseSet W
3 blof.5 B = U BLnOp W
4 eqid U LnOp W = U LnOp W
5 4 3 bloln U NrmCVec W NrmCVec T B T U LnOp W
6 1 2 4 lnof U NrmCVec W NrmCVec T U LnOp W T : X Y
7 5 6 syld3an3 U NrmCVec W NrmCVec T B T : X Y