Metamath Proof Explorer


Theorem bloln

Description: A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses bloln.4 L = U LnOp W
bloln.5 B = U BLnOp W
Assertion bloln U NrmCVec W NrmCVec T B T L

Proof

Step Hyp Ref Expression
1 bloln.4 L = U LnOp W
2 bloln.5 B = U BLnOp W
3 eqid U normOp OLD W = U normOp OLD W
4 3 1 2 isblo U NrmCVec W NrmCVec T B T L U normOp OLD W T < +∞
5 4 simprbda U NrmCVec W NrmCVec T B T L
6 5 3impa U NrmCVec W NrmCVec T B T L