Metamath Proof Explorer


Theorem blometi

Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by NM, 11-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses blometi.1 X = BaseSet U
blometi.2 Y = BaseSet W
blometi.8 C = IndMet U
blometi.d D = IndMet W
blometi.6 N = U normOp OLD W
blometi.7 B = U BLnOp W
blometi.u U NrmCVec
blometi.w W NrmCVec
Assertion blometi T B P X Q X T P D T Q N T P C Q

Proof

Step Hyp Ref Expression
1 blometi.1 X = BaseSet U
2 blometi.2 Y = BaseSet W
3 blometi.8 C = IndMet U
4 blometi.d D = IndMet W
5 blometi.6 N = U normOp OLD W
6 blometi.7 B = U BLnOp W
7 blometi.u U NrmCVec
8 blometi.w W NrmCVec
9 eqid - v U = - v U
10 1 9 nvmcl U NrmCVec P X Q X P - v U Q X
11 7 10 mp3an1 P X Q X P - v U Q X
12 eqid norm CV U = norm CV U
13 eqid norm CV W = norm CV W
14 1 12 13 5 6 7 8 nmblolbi T B P - v U Q X norm CV W T P - v U Q N T norm CV U P - v U Q
15 11 14 sylan2 T B P X Q X norm CV W T P - v U Q N T norm CV U P - v U Q
16 15 3impb T B P X Q X norm CV W T P - v U Q N T norm CV U P - v U Q
17 1 2 6 blof U NrmCVec W NrmCVec T B T : X Y
18 7 8 17 mp3an12 T B T : X Y
19 18 ffvelrnda T B P X T P Y
20 19 3adant3 T B P X Q X T P Y
21 18 ffvelrnda T B Q X T Q Y
22 21 3adant2 T B P X Q X T Q Y
23 eqid - v W = - v W
24 2 23 13 4 imsdval W NrmCVec T P Y T Q Y T P D T Q = norm CV W T P - v W T Q
25 8 24 mp3an1 T P Y T Q Y T P D T Q = norm CV W T P - v W T Q
26 20 22 25 syl2anc T B P X Q X T P D T Q = norm CV W T P - v W T Q
27 eqid U LnOp W = U LnOp W
28 27 6 bloln U NrmCVec W NrmCVec T B T U LnOp W
29 7 8 28 mp3an12 T B T U LnOp W
30 1 9 23 27 lnosub U NrmCVec W NrmCVec T U LnOp W P X Q X T P - v U Q = T P - v W T Q
31 7 30 mp3anl1 W NrmCVec T U LnOp W P X Q X T P - v U Q = T P - v W T Q
32 8 31 mpanl1 T U LnOp W P X Q X T P - v U Q = T P - v W T Q
33 32 3impb T U LnOp W P X Q X T P - v U Q = T P - v W T Q
34 29 33 syl3an1 T B P X Q X T P - v U Q = T P - v W T Q
35 34 fveq2d T B P X Q X norm CV W T P - v U Q = norm CV W T P - v W T Q
36 26 35 eqtr4d T B P X Q X T P D T Q = norm CV W T P - v U Q
37 1 9 12 3 imsdval U NrmCVec P X Q X P C Q = norm CV U P - v U Q
38 7 37 mp3an1 P X Q X P C Q = norm CV U P - v U Q
39 38 3adant1 T B P X Q X P C Q = norm CV U P - v U Q
40 39 oveq2d T B P X Q X N T P C Q = N T norm CV U P - v U Q
41 16 36 40 3brtr4d T B P X Q X T P D T Q N T P C Q