Metamath Proof Explorer


Theorem blopn

Description: A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopni.1 J = MetOpen D
Assertion blopn D ∞Met X P X R * P ball D R J

Proof

Step Hyp Ref Expression
1 mopni.1 J = MetOpen D
2 1 blssopn D ∞Met X ran ball D J
3 2 3ad2ant1 D ∞Met X P X R * ran ball D J
4 blelrn D ∞Met X P X R * P ball D R ran ball D
5 3 4 sseldd D ∞Met X P X R * P ball D R J