Metamath Proof Explorer


Theorem blpnf

Description: The infinity ball in a standard metric is just the whole space. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion blpnf D Met X P X P ball D +∞ = X

Proof

Step Hyp Ref Expression
1 metxmet D Met X D ∞Met X
2 xblpnf D ∞Met X P X x P ball D +∞ x X P D x
3 1 2 sylan D Met X P X x P ball D +∞ x X P D x
4 metcl D Met X P X x X P D x
5 4 3expia D Met X P X x X P D x
6 5 pm4.71d D Met X P X x X x X P D x
7 3 6 bitr4d D Met X P X x P ball D +∞ x X
8 7 eqrdv D Met X P X P ball D +∞ = X