Metamath Proof Explorer


Theorem blss2

Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014) (Revised by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion blss2 D ∞Met X P X Q X R S P D Q S R P ball D R Q ball D S

Proof

Step Hyp Ref Expression
1 simpl1 D ∞Met X P X Q X R S P D Q S R D ∞Met X
2 simpl2 D ∞Met X P X Q X R S P D Q S R P X
3 simpl3 D ∞Met X P X Q X R S P D Q S R Q X
4 simpr1 D ∞Met X P X Q X R S P D Q S R R
5 4 rexrd D ∞Met X P X Q X R S P D Q S R R *
6 simpr2 D ∞Met X P X Q X R S P D Q S R S
7 6 rexrd D ∞Met X P X Q X R S P D Q S R S *
8 6 4 resubcld D ∞Met X P X Q X R S P D Q S R S R
9 simpr3 D ∞Met X P X Q X R S P D Q S R P D Q S R
10 xmetlecl D ∞Met X P X Q X S R P D Q S R P D Q
11 1 2 3 8 9 10 syl122anc D ∞Met X P X Q X R S P D Q S R P D Q
12 rexsub S R S + 𝑒 R = S R
13 6 4 12 syl2anc D ∞Met X P X Q X R S P D Q S R S + 𝑒 R = S R
14 9 13 breqtrrd D ∞Met X P X Q X R S P D Q S R P D Q S + 𝑒 R
15 1 2 3 5 7 11 14 xblss2 D ∞Met X P X Q X R S P D Q S R P ball D R Q ball D S